한국어 임베딩 이기창 pdf 다운로드를 무료로 제공합니다 자연어 처리 모델의 성능을 높이는 핵심 비결, 〈한국어 임베딩〉 임베딩(embedding)은 자연어를 숫자의 나열인 벡터로 바꾼 결과 혹은 그 일련의 과정 전체를 가리키는 용어다.
관련 책 pdf 모음
책 소개
단어나 문장 각각을 벡터로 변환해 벡터 공간에 ‘끼워 넣는다(embed)’는 취지에서 임베딩이라는 이름이 붙었다. 컴퓨터가 자연어를 처리할 수 있게 하려면 자연어를 계산 가능한 형식인 임베딩으로 바꿔줘야 한다.
임베딩은 컴퓨터가 자연어를 이해하도록 하는 첫 관문으로 매우 중요한 기능을 한다. 자연어 처리 모델의 성능은 임베딩이 좌우한다고 해도 과언이 아니다. 이 책에서는 다양한 임베딩 기법을 일별하고 한국어 데이터 전처리, 임베딩 구축에 이르는 전 과정을 튜토리얼 방식으로 소개한다. Word2Vec 등 단어 수준 기법부터 ELMo, BERT 등 문장 수준 임베딩까지 다룬다. 컴퓨터는 ‘계산기’에 불과하다. 컴퓨터는 사람의 말, 즉 자연어(natural language)를 바로 이해할 수 없다. 자연어를 100% 이해하는 인공지능이 등장하더라도 그 이해(understanding)의 본질은 연산(computation)이나 처리(processing)다. 컴퓨터가 자연어를 처리할 수 있게 하려면 자연어를 계산 가능한 형식으로 바꿔줘야 한다. 임베딩(embedding)은 자연어를 숫자의 나열인 벡터(vector)로 바꾼 결과 혹은 그 일련의 과정 전체를 가리키는 용어다. 단어나 문장 각각을 벡터로 변환해 벡터 공간(vector space)에 ‘끼워 넣는다(embed)’는 취지에서 임베딩이라는 이름이 붙었다. 컴퓨터는 임베딩을 계산, 처리해 자연어 형식의 답변을 출력함으로써 인간과 상호작용할 수 있게 된다. 그렇기 때문에 임베딩은 컴퓨터가 자연어를 이해하도록 하는 첫 관문으로 매우 중요한 기능을 한다. 임베딩에는 말뭉치(corpus)의 의미, 문법 정보가 응축돼 있다. 임베딩은 벡터이기 때문에 사칙연산이 가능하며, 단어/문서 관련도(relevance) 역시 계산할 수 있다. 최근 들어 임베딩이 중요해진 이유는 따로 있다. 바로 전이 학습(transfer learning) 때문이다. 전이 학습이란 특정 문제를 풀기 위해 학습한 모델을 다른 문제를 푸는 데 재사용하는 기법을 의미한다. 예컨대 대규모 말뭉치를 미리 학습(pretrain)한 임베딩을 문서 분류 모델의 입력값으로 쓰고, 해당 임베딩을 포함한 모델 전체를 문서 분류 과제를 잘할 수 있도록 업데이트(fine-tuning)하는 방식이 바로 그것이다. 물론 전이 학습은 문서 분류 이외의 다양한 다른 과제에도 적용할 수 있다.
한국어 임베딩 이기창 pdf 다운로드
1장. 서론
1.1 임베딩이란
1.2 임베딩의 역할
1.2.1 단어/문장 간 관련도 계산
1.2.2 의미/문법 정보 함축
1.2.3 전이 학습
1.3 임베딩 기법의 역사와 종류
1.3.1 통계 기반에서 뉴럴 네트워크 기반으로
1.3.2 단어 수준에서 문장 수준으로
1.3.3 룰 → 엔드투엔드 → 프리트레인/파인 튜닝
1.3.4 임베딩의 종류와 성능
1.4 개발 환경
1.4.1 환경 소개
1.4.2 AWS 구성
1.4.3 코드 실행
1.4.4 버그 리포트 및 Q&A
1.4.5 이 책이 도움받고 있는 오픈소스들
1.5 이 책이 다루는 데이터와 주요 용어
1.6 이 장의 요약
1.7 참고 문헌
2장. 벡터가 어떻게 의미를 가지게 되는가
2.1 자연어 계산과 이해
2.2 어떤 단어가 많이 쓰였는가
2.2.1 백오브워즈 가정
2.2.2 TF-IDF
2.2.3 Deep Averaging Network
2.3 단어가 어떤 순서로 쓰였는가
2.3.1 통계 기반 언어 모델
2.3.2 뉴럴 네트워크 기반 언어 모델
2.4 어떤 단어가 같이 쓰였는가
2.4.1 분포 가정
2.4.2 분포와 의미 (1): 형태소
2.4.3 분포와 의미 (2): 품사
2.4.4 점별 상호 정보량
2.4.5 Word2Vec
2.5 이 장의 요약
2.6 참고 문헌
3장. 한국어 전처리
3.1 데이터 확보
3.1.1 한국어 위키백과
3.1.2 KorQuAD
3.1.3 네이버 영화 리뷰 말뭉치
3.1.4 전처리 완료된 데이터 다운로드
3.2 지도 학습 기반 형태소 분석
3.2.1 KoNLPy 사용법
3.2.2 KoNLPy 내 분석기별 성능 차이 분석
3.2.3 Khaiii 사용법
3.2.4 은전한닢에 사용자 사전 추가하기
3.3 비지도 학습 기반 형태소 분석
3.3.1 soynlp 형태소 분석기
3.3.2 구글 센텐스피스
3.3.3 띄어쓰기 교정
3.3.4 형태소 분석 완료된 데이터 다운로드
3.4 이 장의 요약
3.5 참고 문헌
4장. 단어 수준 임베딩
4.1 NPLM
4.1.1 모델 기본 구조
4.1.2 NPLM의 학습
4.1.3 NPLM과 의미 정보
4.2 Word2Vec
4.2.1 모델 기본 구조
4.2.2 학습 데이터 구축
4.2.3 모델 학습
4.2.4 튜토리얼
4.3 FastText
4.3.1 모델 기본 구조
4.3.2 튜토리얼
4.3.3 한글 자소와 FastText
4.4 잠재 의미 분석
4.4.1 PPMI 행렬
4.4.2 행렬 분해로 이해하는 잠재 의미 분석
4.4.3 행렬 분해로 이해하는 Word2Vec
4.4.4 튜토리얼
4.5 GloVe
4.5.1 모델 기본 구조
4.5.2 튜토리얼
4.6 Swivel
4.6.1 모델 기본 구조
4.6.2 튜토리얼
4.7 어떤 단어 임베딩을 사용할 것인가
4.7.1 단어 임베딩 다운로드
4.7.2 단어 유사도 평가
4.7.3 단어 유추 평가
4.7.4 단어 임베딩 시각화
4.8 가중 임베딩
4.8.1 모델 개요
4.8.2 모델 구현
4.8.3 튜토리얼
4.9 이 장의 요약
4.10 참고 문헌
5장. 문장 수준 임베딩
5.1 잠재 의미 분석
5.2 Doc2Vec
5.2.1 모델 개요
5.2.2 튜토리얼
5.3 잠재 디리클레 할당
5.3.1 모델 개요
5.3.2 아키텍처
5.3.3 LDA와 깁스 샘플링
5.3.4 튜토리얼
5.4 ELMo
5.4.1 문자 단위 컨볼루션 레이어
5.4.2 양방향 LSTM, 스코어 레이어
5.4.3 ELMo 레이어
5.4.4 프리트레인 튜토리얼
5.5 트랜스포머 네트워크
5.5.1 Scaled Dot-Product Attention
5.5.2 멀티헤드 어텐션
5.5.3 Position-wise Feed-Forward Networks
5.5.4 트랜스포머의 학습 전략
5.6 BERT
5.6.1 BERT, ELMo, GPT
5.6.2 프리트레인 태스크와 학습 데이터 구축
5.6.3 BERT 모델의 구조
5.6.4 프리트레인 튜토리얼
5.7 이 장의 요약
5.8 참고 문헌
6장. 임베딩 파인 튜닝
6.1 프리트레인과 파인 튜닝
6.2 분류를 위한 파이프라인 만들기
6.3 단어 임베딩 활용
6.3.1 네트워크 개요
6.3.2 네트워크 구현
6.3.3 튜토리얼
6.4 ELMo 활용
6.4.1 네트워크 개요
6.4.2 네트워크 구현
6.4.3 튜토리얼
6.5 BERT 활용
6.5.1 네트워크 개요
6.5.2 네트워크 구현
6.5.3 튜토리얼
6.6 어떤 문장 임베딩을 사용할 것인가
6.7 이 장의 요약
6.8 참고 문헌
부록
부록 A. 선형대수학 기초
1.1 벡터, 행렬 연산
1.2 내적과 공분산
1.3 내적과 사영
1.4 내적과 선형변환
1.5 행렬 분해 기반 차원 축소 (1): 주성분 분석(PCA)
1.6 행렬 분해 기반 차원 축소 (2): 특이값 분해(SVD)
부록 B. 확률론 기초
2.1 확률변수와 확률 분포
2.2 베이지안 확률론
부록 C. 뉴럴 네트워크 기초
3.1 DAG로 이해하는 뉴럴 네트워크
3.2 뉴럴 네트워크는 확률모델이다
3.3 최대우도추정과 학습 손실
3.4 그래디언트 디센트
3.5 계산 노드별 역전파
3.6 CNN과 RNN
부록 D. 국어학 기초
4.1 통사 단위
4.2 문장 유형
4.3 품사
4.4 상과 시제
4.5 주제
4.6 높임
4.7 양태
4.8 의미역
4.9 피동
4.10 사동
4.11 부정
부록 E. 참고 문헌