시계열 데이터 처리와 분석 in R pdf 다운로드를 무료로 제공합니다 복잡한 수학 공식 없이 코드 위주의 설명과 실제 데이터를 통해 배우는 시계열 데이터와 알고리즘! 20여 년간 우리나라의 교육통계 데이터를 다뤄온 저자가 꼼꼼하게 안내하는 시계열 데이터 입문서!
관련 책 pdf 모음
책 소개
이 책은 시계열 데이터 분석을 시작하기를 원하는 분들이나 실무에서 시계열 데이터를 사용하는 직장인을 위해서 어려운 수학 공식에 대한 이해 없이도 시계열 데이터를 어떻게 읽어 들이고, 어떻게 그루핑하고, 어떻게 합계와 평균을 낼 것이며, 어떻게 플롯을 만들고, 어떻게 예측 모델과 미래 데이터를 만들 것인가에 대한 코드 위주의 설명으로 시계열 데이터를 다룬다. 시간적 변화에 따라 발생하는 데이터의 변화량을 파악하여 응용하는 경우가 많은데, 특히 경제지표 예측, 상품 수요 예측, 관광객 수요 예측, 전기 수요 예측 등과 같이 경제, 경영 분야뿐만 아니라 많은 산업에서 사용된다. 이처럼 시계열 데이터는 과거의 데이터 패턴이 유사하게 지속된다는 가정하에 미래 특정한 기간의 데이터 흐름을 분석하기 위해 사용된다. 특히 시간적 변화에 따른 미래의 결과를 예측하는 것은 정부의 정책을 수립하거나 기업에서 비즈니스 전략을 수립하는 과정에서 많이 사용되고 있기 때문에 시계열 데이터에 대한 중요성이 매우 높다.
시계열 데이터 처리와 분석 in R
1장 시계열 데이터 1
1.1 시계열 데이터란? 3
1.2 시계열 데이터의 특성 5
1.2.1 시간 독립변수 5
1.2.2 자기상관 관계 6
1.2.3 추세 경향성 7
1.2.4 계절성, 순환성 8
1.2.5 불확실성 9
2장 시계열 데이터 객체 11
2.1 날짜/시간 데이터 클래스 12
2.1.1 date 클래스 12
2.1.2 POSIXct, POSIXlt 클래스 13
2.1.3 yearmon, yearqtr 클래스 15
2.1.4 날짜, 시간 포맷 16
2.2 시계열 데이터 객체 17
2.2.1 ts 17
2.2.2 xts 18
2.2.3 tsibble 20
2.3 시계열 데이터 import 22
2.3.1 엑셀 파일 23
2.3.2 CSV 파일 25
2.3.3 추가 실습 데이터 생성 26
3장 시계열 시각화 31
3.1 data.frame: ggplot2 패키지 32
3.2 xts: xts 패키지 41
3.3 ts: forecast 패키지 46
3.4 tsibble: feasts 패키지 50
3.5 data.frame: timetk 패키지 54
4장 시계열 데이터 처리 59
4.1 오늘 며칠일까?: 시간 정보 추출 60
4.2 며칠 지났을까?: 시간 기간 연산 61
4.3 이번 주 마지막 날은 며칠일까?: 시간 반올림 65
4.4 주간, 월간 데이터 합계, 평균은?: 시간 그루핑 66
4.5 주식 시가, 고가, 저가, 종가는 어떻게 구할까?: OHLC 78
4.6 3일 평균, 5일 합계는?: 시간 롤링 79
4.7 지난 달 데이터는?: 필터링 83
4.8 월별, 분기별, 연별 증감량 88
4.9 월 비중 백분율, 연 비중 백분율 92
4.10 월별, 분기별, 연별 누적 합계 96
4.11 동월별, 동분기별, 동년별 플롯 100
5장 시계열 forecasting Part I – 기초 개념 107
5.1 정상성, 비정상성 109
5.2 지연과 차분 111
5.3 ACF와 PACF 116
5.4 적합값과 잔차 123
5.5 백색잡음 124
5.6 시계열 분해 127
5.7 정상성 테스트 131
5.8 계절성 검정 133
6장 시계열 forecasting Part II – 시계열 예측 모델 137
6.1 평균 모델 139
6.2 단순 모델 142
6.3 계절성 단순 모델 146
6.4 랜덤워크 모델 148
6.5 회귀 모델 160
6.5.1 forecast::tslm 161
6.5.2 timetk::plot_time_series_regression 167
6.6 지수 평활 모델 170
6.6.1 단순 지수 평활 모델 170
6.6.2 홀트 모델 176
6.6.3 홀트 윈터 모델 182
6.6.4 ETS 모델 183
6.7 ARIMA 모델 188
6.7.1 자기회귀 모델 189
6.7.2 이동평균 모델 193
6.7.3 ARIMA 모델 결정 198
6.7.4 Seasonal ARIMA 모델 208
6.8 TBATS 모델 219
6.9 prophet 모델 221
6.10 신경망 모델 226
7장 시계열 forecasting Part III – 시계열 분석 프레임워크 229
7.1 성능 분석 지수 230
7.1.1 MAE 230
7.1.2 RMSE 231
7.1.3 MPE 232
7.1.4 MAPE 233
7.2 fable 프레임워크 234
7.2.1 미래 학생수 예측 235
7.2.2 미래 취업자수 예측 239
7.2.3 미래 코로나 확진자수 예측 242
7.3 modeltime 프레임워크 246
7.3.1 미래 학생수 예측 248
7.3.2 미래 취업자수 예측 255
7.3.3 미래 코로나 확진자수 예측 259
찾아보기 264